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Abstract
Novikov algebras were introduced in connection with the Poisson brackets
of hydrodynamic-type and Hamiltonian operators in the formal variational
calculus. It is well known that the radical of a finite-dimensional Novikov
algebra is transitive. In this paper, we prove that a kind realization of Novikov
algebras given by S Gel’fand is transitive and we give a deformation theory
of Novikov algebras. In two and three dimensions, we find that all transitive
Novikov algebras can be realized as the Novikov algebras given by S Gel’fand
and their compatible infinitesimal deformations.

PACS numbers: 0210, 0220, 0240

1. Introduction

Hamiltonian operators are closely related to certain algebraic structures [1–8]. Gel’fand and
Dikii introduced formal variational calculus and found certain interesting Poisson structures
when they studied Hamiltonian systems related to certain nonlinear partial differential
equations, such as KdV equations [1, 2]. In [3], further connections between Hamiltonian
operators and certain algebraic structures were found. Dubrovin, Balanskii and Novikov
studied similar Poisson structures from another point of view [4–6]. One of the algebraic
structures appearing in [3, 6], which is called a ‘Novikov algebra’ by Osborn [9–14], was
introduced in connection with the Poisson brackets of hydrodynamic type.

A Novikov algebra A is a vector space over a field K with a bilinear product (x, y) → xy

satisfying

(x1, x2, x3) = (x2, x1, x3) (1.1)

and

(x1x2)x3 = (x1x3)x2 (1.2)

for x1, x2, x3 ∈ A, where

(x1, x2, x3) = (x1x2)x3 − x1(x2x3). (1.3)
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Novikov algebras are a special class of left-symmetric algebras which only satisfy
equation (1.1). Left-symmetric algebras are non-associative algebras arising from the study
of affine manifolds, affine structures and convex homogeneous cones [15–18].

The commutator of a Novikov algebra (or a left-symmetric algebra) A

[x, y] = xy − yx (1.4)

defines a (sub-adjacent) Lie algebra G = G(A). Let Lx,Rx denote left and right multiplication,
respectively, i.e. Lx(y) = xy,Rx(y) = yx,∀x, y ∈ A. Then for a Novikov algebra, the
left multiplication operators form a Lie algebra and the right multiplication operators are
commutative.

Zel’manov gave a fundamental structure theory of a finite-dimensional Novikov algebra
over an algebraically closed field with characteristic 0 [19]: a Novikov algebraA is called right-
nilpotent or transitive if every Rx is nilpotent. Then by equation (1.2), a finite-dimensional
Novikov algebra A contains a (unique) largest transitive ideal N(A) (called the radical of A)
and the quotient algebra A/N(A) is a direct sum of fields. The transitivity corresponds to the
completeness of the affine manifolds in geometry [15, 16].

Therefore, it is necessary to understand the structures and properties of transitive Novikov
algebras in detail. This is still an open question, which is obviously quite difficult. This can
be seen from the complicated classification of Novikov algebras in low dimensions [20]. One
of the reasons for this is due to there not being a ‘suitable’ representation theory for Novikov
algebras because they are not associative in general (hence their representations should have bi-
module structures). So it is important to find some realizations of transitive Novikov algebras
at first, which will be useful to construct a general theory.

The first important kind of Novikov algebras was found by S Gel’fand [3]: let (A, ·) be a
commutative associative algebra, and D be its derivative. Then with the new product

a ∗ b = a · Db (1.5)

(A, ∗) becomes a Novikov algebra. Later, Filipov [21] proved that for any ξ ∈ K, the product

a ∗ξ b = a · Db + ξa · b (1.6)

makes (A, ∗ξ ) into a Novikov algebra, too. Xu [13] extended ξ to a fixed element a ∈ A, i.e.
with the product

a ∗x b = a · Db + x · a · b (1.7)

(A, ∗x) is still a Novikov algebra. Furthermore, using the product defined by (1.7), Xu found
several classes of infinite-dimensional simple Novikov algebras [13].

In the paper, we discuss the finite-dimensional Novikov algebras defined by the above
equations. The paper is organized as follows. In section 2, we find that the Novikov algebra
defined by equation (1.5) is transitive. In section 3, we give a deformation theory for Novikov
algebras and the Novikov algebra defined by equation (1.6) or equation (1.7) can be regarded
as a deformation of the algebra defined by equation (1.5). In section 4, we can find that all
the transitive Novikov algebras in three dimensions can be realized as the algebras defined by
equation (1.5) and their compatible infinitesimal deformations. In section 5, we give some
conjectures based on the discussion in the previous sections.

2. The Novikov algebras defined by equation (1.5)

As in the introduction, let (A, ·) be a finite-dimensional commutative associative algebra. Let
D be its derivative, i.e.

D(a · b) = Da · b + a · Db ∀ a, b ∈ A. (2.1)
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(A, ∗) is a Novikov algebra with the product

a ∗ b = a · Db. (2.2)

Let R be the radical of (A, ·), that is, R is the maximal nilpotent ideal of (A, ·). By
Wedderburn’s principal theorem [22], there exists a subalgebra S such that

A/R ∼= S and A = R + S (2.3)

and S is isomorphic to the direct sum of fields. Hence, we can choose a basis {e1, e2, . . . , en}
such that {e1, . . . , ek} ⊂ R, {ek+1, . . . , en} ⊂ S, and

eiej ∈ R eieα ∈ R eαeβ = δαβeα + aαβ aαβ ∈ R

1 � i j � k k + 1 � α β � n.
(2.4)

Claim. For any derivation D, we have D(A) ⊂ R.
It is well known (see [23], chapter I, exercise 22) that for an associative algebra the

derivation maps the radical into the radical, that is, D(R) ⊂ R. For eα(k + 1 � α � n), set

Deα =
k∑

i=1

diei +
n∑

γ=k+1

dγ eγ . (2.5)

Then by equations (2.4) and (2.1), we have

D(eα · eα) = 2eα · D(eα) = D(eα + aαα). (2.6)

Comparing the coefficients of eγ , k + 1 � γ � n, we have

dγ = 0 k + 1 � γ � n. (2.7)

So this implies that D(eα) ∈ R. Therefore, D(A) ⊂ R.

For any a ∈ (A, ·), Da ∈ R is nilpotent since R ⊂ (A, ·) is nilpotent. Hence there exists
n ∈ Z such that (Da)n = 0. Thus in (A, ∗), we have

(Ra)
n(b) = ((· · · (b ∗ a) ∗ a) · · · ∗ a) ∗ a = b · (Da)n = 0 ∀b ∈ A. (2.8)

This means that Ra is a nilpotent transformation of (A, ∗). Hence (A, ∗) is transitive.
Since the sub-adjacent Lie algebra G(A) of a transitive left-symmetric algebra A is

solvable [15], we have

Corollary. Let (A, ·) be a commutative associative algebra, D be its derivative. Then the
algebra defined by

[a, b] = a · Db − b · Da (2.9)

is a solvable Lie algebra.

Example 2.1. There are three non-isomorphic transitive Novikov algebras in two dimensions:
(T1), (T2) and (T3) [20]. All of them can be realized as the algebras defined by equation (1.5),
which can be seen from table 1: recall that the (form) characteristic matrix of a Novikov
algebra is defined as

A =
(∑n

k=1 a
k
11ek · · · ∑n

k=1 a
k
1nek

· · · · · · · · ·∑n
k=1 a

k
n1ek · · · ∑n

k=1 a
k
nnek

)
(2.10)
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Table 1.

Characteristic matrix of (A, ∗)
Characteristic matrix of (A, ·) Derivation algebras of (A, ·) under D �= 0 (isomorphic classes)

(T1)

(
0 0
0 0

)
gl(2) =

(
a11 a12
a21 a22

)
(T1)

(
0 0
0 0

)

(T2)

(
e2 0
0 0

) (
a11 0
a21 2a11

)
(T2)

(
e2 0
0 0

)
(a21 = 0)

(T3)

(
0 0

−e1 0

)
(a21 �= 0)

(N1)

(
e1 0
0 e2

)
0 (T1)

(N2)

(
e1 0
0 0

) (
0 0
0 a22

)
(T1)

(N3)

(
e1 e2
e2 0

) (
0 0
0 a22

)
(T2)

where {ei} is a basis of A and eiej = ∑n
k=1 a

k
ij ek . Moreover, under the same basis, any

derivation D of A can be determined by a matrix, that is,

D =
(
a11 · · · a1n

· · · · · · · · ·
an1 · · · ann

)
D(ei) =

n∑
j=1

aij ej . (2.11)

There exist transitive Novikov algebras which cannot be realized as the algebras defined
by equation (1.5). We will give such examples in section 4.

3. The deformations of Novikov algebras

A method to obtain new Novikov algebras is the study of deformations of Novikov algebras.
A general theory for deformations is given in [24].

Let (A, ∗) be a Novikov algebra, and gp : A × A → A be a bilinear product defined by

gq(a, b) = a ∗ b + qG1(a, b) + q2G2(a, b) + q3G3(a, b) + · · · (3.1)

where Gi are bilinear products with G0(a, b) = a∗b. (Aq, gq) is a family of Novikov algebras
if and only if

gq(a, gq(b, c)) − gq(gq(a, b), c)) = gq(b, gq(a, c)) − gq(gq(b, a), c)) (3.2)

gq(gq(a, b), c)) = gq(gq(a, c), b)) (3.3)

for all a, b, c ∈ A. The two equations are equivalent to the following two equations:∑
m+n=k

[Gm(a,Gn(b, c)) − Gm(Gn(a, b), c) − Gm(b,Gn(a, c)) + Gm(Gn(b, a), c)] = 0 (3.4)

∑
m+n=k

[Gm(Gn(a, b), c) − Gm(Gn(a, c), b)] = 0 (3.5)
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for all non-negative integers k, and m, n � 0. For k = 0 this means A = A0 is a Novikov
algebra. For k = 1 we obtain two equations for G1:

G1(a, b ∗ c) − G1(a ∗ b, c) + G1(b ∗ a, c) − G1(b, a ∗ c) + a ∗ G1(b, c) − G1(a, b) ∗ c

+G1(b, a) ∗ c − b ∗ G1(a, c) = 0 (3.6)

G1(a, b) ∗ c − G1(a, c) ∗ b + G1(a ∗ b, c) − G1(a ∗ c, b) = 0. (3.7)

We call G1 an infinitesimal deformation. Since the commutator of a Novikov algebra is a
Lie algebra, we should consider some kind of ‘compatible’ properties for the deformations.
Obviously, the algebra (Aq, gq) defined by an infinitesimal deformation G1:

gq(a, b) = a ∗ b + qG1(a, b) (3.8)

has the same sub-adjacent Lie algebra structure G(A) with (A, ∗) if and only if G1 is a
commutative algebra, i.e.

G1(a, b) = G1(b, a). (3.9)

In this case, we call G1 a compatible (infinitesimal) deformation.

Example 3.1. Both the families of Novikov algebras (A, ∗ξ ) defined by equation (1.6) and
(A, ∗tx) defined by equation (1.7) are compatible infinitesimal deformations of the Novikov
algebra defined by equation (1.5) with a fixed derivative D. For equation (1.6), we let
G1(a, b) = a · b, then equation (3.6) holds since

a · (b · Dc) − (a · Db) · c + b · Da · c − b · (a · Dc) = b · c · Da − a · Db · c
a · D(b · c) − a · b · Dc + b · a · Dc − b · D(a · c) = a · Db · c − b · c · Da

and equation (3.7) holds since

a · b · Dc − a · c · Db + a · Db · c − a · Dc · b = 0.

For equation (1.7), we let G1(a, b) = x ·a ·b. Similarly, it is easy to verify that equations (3.6)
and (3.7) hold. And the algebras defined by equations (1.5)–(1.7) have the same sub-adjacent
Lie algebras from the commutativity of (A, ·).

A natural question to ask is when two deformations are equivalent, which means that the
resulting Novikov algebras are isomorphic? This question can be answered by a cohomology
theory of Novikov algebras, which will be discussed in detail elsewhere [25]. In this paper, we
only briefly discuss the 2-cohomology group. In fact, the infinitesimal deformation G1 belongs
to the so-called 2-cocycles: let (A, ∗) be a Novikov algebra, then the space of 2-cocycles and
2-coboundaries is given by

Z2(A,A) = {f : A × A → A|f is bilinear; equations (3.6) and (3.7) hold} (3.10)

B2(A,A) = {f : A × A → A|f is bilinear; f (a, b) = a ∗ g(b) + g(a) ∗ b − g(a ∗ b),

for some g : A → A and g is linear}. (3.11)

It is easy to show that B2(A,A) ⊂ Z2(A,A) and we can give the 2-cohomology group
H 2(A,A) as

H 2(A,A) = Z2(A,A)/B2(A,A). (3.12)

Two deformations of (A, ∗) are equivalent if the 2-cocycles G1 and G′
1 are cohomological,

that is G1 − G′
1 ∈ B2(A,A).
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Example 3.2. For the Novikov algebras defined by equation (1.5), there exist compatible
deformations which are not equivalent to those given by equation (1.6) and (1.7). Such an
example can be seen in the next section.

At the end of this section, we would like to make the following remarks.

(a) It is obvious that any Novikov algebra can be regarded as a deformation of the trivial
Novikov algebra (where all products are zero). In general, we assume that (A, ∗) is not
trivial.

(b) Usually, the deformation of a transitive Novikov algebra is not transitive. However, for a
nilpotent commutative associative algebraA, the algebras defined by equations (1.5)–(1.7)
are transitive.

(c) In general, we can obtain a family of Novikov algebras (Aq, gq) through a deformation of
a Novikov algebra A. Sometimes, this family is mutually isomorphic for q �= 0. In such
a case, we call it a special deformation.

4. The transitive Novikov algebras in three dimensions

In this section, we can see that all three-dimensional transitive Novikov algebras can be realized
as the algebras defined by equation (1.5) and their compatible infinitesimal deformations.
Firstly, we give all the transitive Novikov algebras defined by equation (1.5).

Remark. For the case (A, ·) is (C11), the characteristic matrix of (A, ∗) is( 0 0 0
0 0 0

a11e1 + a12e2 a21e1 + a22e2 0

)

which the classification in table 2 is obtained in [20].
According to the classification of transitive Novikov algebras in three dimensions

[20], there are the following algebras which cannot be the forms (A, ∗) defined by
equation (1.5).

(1) Type (A4): ( 0 0 0
0 0 e1

0 e1 e2

)
.

This algebra is isomorphic to the algebras defined by equation (1.6), where (A, ·) is (A4),

D =
( 3a33 0 0

2a32 2a33 0
a31 a32 a33

)

with a33 = 0, a32 �= 0. In fact, this is a special deformation.
(2) Types (A7) with l �= 2:( 0 0 0

0 0 e1

0 le1 e2

)
(l �= 2, 1).
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Table 2.

Characteristic Derivation Characteristic matrix of (A, ∗)
matrix of (A, ·) algebras of (A, ·) under D �= 0 (isomorphic classes)

(A1)

( 0 0 0
0 0 0
0 0 0

)
gl(3) =

(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
(A1)

( 0 0 0
0 0 0
0 0 0

)

(A2)

( 0 0 0
0 0 0
0 0 e1

) ( 2a33 0 0
a21 a22 0
a31 a32 a33

)
(A1) (a33 = 0)

(A2)

( 0 0 0
0 0 0
0 0 e1

)
(a33 �= 0)

(A3)

( 0 0 0
0 e1 0
0 0 e1

) ( 2a22 0 0
a21 a22 a23
a31 −a23 a22

)
(A1) (a22 = a23 = 0)

(A3)

( 0 0 0
0 e1 0
0 0 e1

)
(a23 = 0, a22 �= 0)

(A5)

( 0 0 0
0 0 e1
0 −e1 0

)
(a22 = 0, a23 �= 0)

(A6) (l �= 0)

( 0 0 0
0 e1 e1
0 −e1 le1

)
(a22 �= 0, a23 �= 0)

(A4)

( 0 0 0
0 0 e1
0 e1 e2

) ( 3a33 0 0
2a32 2a33 0
a31 a32 a33

)
(A1) (a33 = a32 = 0)

(A2) (a33 = 0, a32 �= 0)

(A7) (l = 2)

( 0 0 0
0 0 e1
0 2e1 e2

)
(a33 �= 0)

(
e1 0 0
0 e2 0
0 0 e3

)
{0} (A1)

(B1)

( 0 0 0
0 e2 0
0 0 e3

) (
a11 0 0
0 0 0
0 0 0

)
(A1)

(B2)

( 0 0 e1
0 e2 0
e1 0 e3

) (
a11 0 0
0 0 0
0 0 0

)
(A9)

( 0 0 0
0 0 0
0 e2 0

)

(C1)

( 0 0 0
0 0 0
0 0 e3

) (
a11 a12 0
a21 a22 0
0 0 0

)
(A1)

(C2)

( 0 0 e1
0 0 0
e1 0 e3

) (
a11 0 0
0 a22 0
0 0 0

)
(A9)

These algebras belong to the family of algebras defined by equation (1.6), where (A, ·) is
(A4),

D =
( 3a33 0 0

2a32 2a33 0
a31 a32 a33

)

with a33 �= 0.
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Table 2. Continued.

Characteristic Derivation Characteristic matrix of (A, ∗)
matrix of (A, ·) algebras of (A, ·) under D �= 0 (isomorphic classes)

(C11)

( 0 0 e1
0 0 e2
e1 e2 e3

) (
a11 a12 0
a21 a22 0
0 0 0

)
(A9)

(A6) (l = −1)

( 0 0 0
0 e1 e1
0 −e1 −e1

)

(A11)

( 0 0 0
0 0 0
e1 le2 0

)

|l| � 1, l �= 0

(A12)

( 0 0 0
0 0 0
e1 e1 + e2 0

)

(D1)

(
e2 0 0
0 0 0
0 0 e3

) (
a11 a12 0
0 2a11 0
0 0 0

)
(A2)

(D2)

(
e2 0 e1
0 0 e2
e1 e2 e3

) (
a11 a12 0
0 2a11 0
0 0 0

)
(A6) (l = −1)

( 0 0 0
0 e1 e1
0 −e1 −e1

)
(a11 = 0)

(A13)

( 0 0 0
0 e1 0
e1

1
2 e2 0

)
(a11 �= 0)

(3) Type (A6) with l = 0:( 0 0 0
0 e1 e1

0 −e1 0

)
.

We can show that this algebra cannot be obtained from equation (1.6) or equation (1.7). It
is isomorphic to a special (compatible) infinitesimal deformation of (A5) with G1 = (A2).

(4) Type (A8): ( 0 0 0
0 0 0
0 e1 e2

)
.

This algebra cannot be obtained from equation (1.6) or equation (1.7). It is isomorphic to
a special (compatible) infinitesimal deformation of( 0 0 0

0 0 0
0 e1 0

)
.

(Type (A6) with l = −1) with

G1 =
( 0 0 0

0 0 0
0 0 e2

)

which is isomorphic to (A2).
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(5) Type (A10): ( 0 0 0
0 0 0
0 e2 e1

)
.

This algebra cannot be obtained from equation (1.6) or equation (1.7). It is isomorphic to
a special (compatible) infinitesimal deformation of (A9) with G1 = (A2).

5. Summary and conjectures

We have seen that in two and three dimensions, all transitive Novikov algebras can be realized
as the algebras defined by equation (1.5) and their compatible infinitesimal deformations. We
also find that some deformations are special. A natural question is whether these results can
be extended to higher dimensions?

Conjecture 1. All transitive Novikov algebras can be realized as the algebras defined by
equation (1.5) and their compatible infinitesimal deformations.

A direct corollary from the conjecture is

Conjecture 2. The sub-adjacent Lie algebra of a Novikov algebra A is solvable and can be
defined as

[a, b] = a · Db − b · Da

where (A, ·) is a commutative associative algebra and D is its derivative.

It is also interesting to know the possible application of these realizations in physics.
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